Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Heliyon ; 9(3): e13763, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2275834

ABSTRACT

Initial studies in COVID-19 patients reported lower mortality rates associated with the use of the drug heparin, a widely used anticoagulant. The objective of this analysis was to determine whether there are adverse events associated with the administration of anticoagulants, and specifically how this might apply in patients known to have COVID-19. Data for this study were obtained from the Food and Drug Administration's Adverse Event Reporting System (FAERS) public database and from the NIH's clinical trials website. Proportional Reporting Ratios (PRR) with lower 95% confidence intervals (lower CI) and empirical Bayes geometric mean (EBGM) scores with lower 95% confidence limits were calculated for data from the FAERS database where the adverse events studied mimicked COVID-19 symptoms.

2.
Elife ; 102021 11 23.
Article in English | MEDLINE | ID: covidwho-1622815

ABSTRACT

Background: Potential therapy and confounding factors including typical co-administered medications, patient's disease states, disease prevalence, patient demographics, medical histories, and reasons for prescribing a drug often are incomplete, conflicting, missing, or uncharacterized in spontaneous adverse drug event (ADE) reporting systems. These missing or incomplete features can affect and limit the application of quantitative methods in pharmacovigilance for meta-analyses of data during randomized clinical trials. Methods: Data from patients with hypertension were retrieved and integrated from the FDA Adverse Event Reporting System; 134 antihypertensive drugs out of 1131 drugs were filtered and then evaluated using the empirical Bayes geometric mean (EBGM) of the posterior distribution to build ADE-drug profiles with an emphasis on the pulmonary ADEs. Afterward, the graphical least absolute shrinkage and selection operator (GLASSO) captured drug associations based on pulmonary ADEs by correcting hidden factors and confounder misclassification. Selected drugs were then compared using the Friedman test in drug classes and clusters obtained from GLASSO. Results: Following multiple filtering stages to exclude insignificant and noise-driven reports, we found that drugs from antihypertensives agents, urologicals, and antithrombotic agents (macitentan, bosentan, epoprostenol, selexipag, sildenafil, tadalafil, and beraprost) form a similar class with a significantly higher incidence of pulmonary ADEs. Macitentan and bosentan were associated with 64% and 56% of pulmonary ADEs, respectively. Because these two medications are prescribed in diseases affecting pulmonary function and may be likely to emerge among the highest reported pulmonary ADEs, in fact, they serve to validate the methods utilized here. Conversely, doxazosin and rilmenidine were found to have the least pulmonary ADEs in selected drugs from hypertension patients. Nifedipine and candesartan were also found by signal detection methods to form a drug cluster, shown by several studies an effective combination of these drugs on lowering blood pressure and appeared an improved side effect profile in comparison with single-agent monotherapy. Conclusions: We consider pulmonary ADE profiles in multiple long-standing groups of therapeutics including antihypertensive agents, antithrombotic agents, beta-blocking agents, calcium channel blockers, or agents acting on the renin-angiotensin system, in patients with hypertension associated with high risk for coronavirus disease 2019 (COVID-19). We found that several individual drugs have significant differences between their drug classes and compared to other drug classes. For instance, macitentan and bosentan from endothelin receptor antagonists show major concern while doxazosin and rilmenidine exhibited the least pulmonary ADEs compared to the outcomes of other drugs. Using techniques in this study, we assessed and confirmed the hypothesis that drugs from the same drug class could have very different pulmonary ADE profiles affecting outcomes in acute respiratory illness. Funding: GJW and MJD accepted funding from BioNexus KC for funding on this project, but BioNexus KC had no direct role in this article.


Subject(s)
Antihypertensive Agents/adverse effects , COVID-19/complications , Data Mining/methods , Drug-Related Side Effects and Adverse Reactions , Hypertension/drug therapy , Pharmacovigilance , Adverse Drug Reaction Reporting Systems , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Antihypertensive Agents/therapeutic use , Bayes Theorem , Calcium Channel Blockers/adverse effects , Fibrinolytic Agents/adverse effects , Humans , Hypertension/complications , SARS-CoV-2
3.
J Am Pharm Assoc (2003) ; 60(6): e145-e152, 2020.
Article in English | MEDLINE | ID: covidwho-457074

ABSTRACT

OBJECTIVES: The current demographic information from China reports that 10%-19% of patients hospitalized with coronavirus disease (COVID-19) were diabetic. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are considered first-line agents in patients with diabetes because of their nephroprotective effects, but administration of these drugs leads to upregulation of angiotensin-converting enzyme 2 (ACE2), which is responsible for the viral entry of severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2). Data are lacking to determine what pulmonary effects ACEIs or ARBs may have in patients with diabetes, which could be relevant in the management of patients infected with SARS-CoV-2. This study aims to assess the prevalence of pulmonary adverse drug effects (ADEs) in patients with diabetes who were taking ACEI or ARBs to provide guidance as to how these medications could affect outcomes in acute respiratory illnesses such as SARS-CoV-2 infection. METHODS: 1DATA, a unique data platform resulting from collaboration across veterinary and human health care, used an intelligent medicine recommender system (1DrugAssist) developed using several national and international databases to evaluate all ADEs reported to the Food and Drug Administration for patients with diabetes taking ACEIs or ARBs. RESULTS: Mining of this data elucidated the proportion of a cluster of pulmonary ADEs associated with specific medications in these classes, which may aid health care professionals in understanding how these medications could worsen or predispose patients with diabetes to infections affecting the respiratory system, specifically COVID-19. Based on this data mining process, captopril was found to have a statistically significantly higher incidence of pulmonary ADEs compared with other ACEIs (P = 0.005) as well as ARBs (P = 0.012), though other specific drugs also had important pulmonary ADEs associated with their use. CONCLUSION: These analyses suggest that pharmacists and clinicians will need to consider the specific medication's adverse event profile, particularly captopril, on how it may affect infections and other acute disease states that alter pulmonary function, such as COVID-19.


Subject(s)
Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/mortality , Diabetes Mellitus/drug therapy , Diabetic Nephropathies/prevention & control , Respiratory System/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/complications , COVID-19/metabolism , China/epidemiology , Diabetes Mellitus/metabolism , Diabetic Nephropathies/complications , Diabetic Nephropathies/metabolism , Humans , Morbidity/trends , Pharmacovigilance , Prevalence , Renin-Angiotensin System/drug effects , Respiratory System/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL